Central tendens (definition, formel) - Top 3 foranstaltninger

Hvad er målinger af central tendens?

Central tendens henviser til den værdi, der er afledt af tilfældige variabler fra datasættet, der afspejler centrum for fordelingen af ​​dataene, og som generelt kan beskrives ved hjælp af forskellige mål som middel, median og tilstand.

Det er en enkelt værdi, der forsøger at beskrive et datasæt ved at identificere midten af ​​den centrale position i det givne datasæt. Nogle gange kaldes disse foranstaltninger standarderne for den midterste eller den centrale placering. Gennemsnittet (ellers kendt som gennemsnittet) er det mest anvendte mål for central tendens, men der er andre metoder såsom medianen og tilstanden.

Foranstaltninger for den centrale tendensformel

For gennemsnit x,

Hvor,

  • ∑x er summen af ​​alle observationer i et givet datasæt
  • n er antallet af observationer

Medianen er centrumscore for et givet datasæt, som når det er arrangeret i størrelsesorden.

Tilstanden er den hyppigste score i det givne datasæt. Et histogramdiagram kan bruges til at identificere det samme.

Forklaring

Gennemsnittet eller gennemsnittet er summen af ​​alle observationer i det givne datasæt, og det divideres derefter med antallet af observationer i det givne datasæt. Så hvis der er n observationer i et givet datasæt, og de har observationer som x1, x2, …, Xn, så er det at tage nogle af dem totalt og at dividere det samme med observationer er middel, som forsøger at bringe det centrale punkt. Median er intet andet end den midterste værdi af observationerne og er for det meste pålidelig, når dataene har afvigelser, mens tilstanden bruges, når antallet af observationer ofte gentager sig og derfor foretrækkes frem for middelværdien, når der er sådanne prøver, hvor værdier gentager dem mest.

Eksempler

Eksempel nr. 1

Overvej følgende prøve: 33, 55, 66, 56, 77, 63, 87, 45, 33, 82, 67, 56, 77, 62, 56. Du er forpligtet til at komme med en central tendens.

Løsning:

Nedenfor gives data til beregning.

Ved hjælp af ovenstående information vil beregningen af ​​gennemsnit være som følger,

  • Middelværdi = 915/15

Gennemsnit vil være -

Gennemsnit = 61

Beregningen af ​​medianen vil være som følger-

Median = 62

Da antallet af observationer er ulige, den midterste værdi, som er den 8 th vil position, være medianen, hvilket er 62.

Beregning af tilstand vil være som følger-

Mode = 56

For mere kan vi bemærke fra ovenstående tabel, at antallet af observationer, der gentages oftest, er 56. (3 gange i datasættet)

Eksempel 2

Ryan internationale skole overvejer at vælge de bedste spillere til at repræsentere dem i OL-konkurrencen, der snart arrangeres. De har dog observeret, at deres spillere er spredt på tværs af sektioner og standarder. Derfor, før de lægger et navn i nogen af ​​konkurrencerne, vil de gerne studere de studerendes centrale tendens med hensyn til højde og derefter vægt.

Højdekvalifikationen er mindst 160 cm, og vægten bør ikke være mere end 70 kg. Du skal beregne, hvad der er den centrale tendens for deres studerende med hensyn til højde og vægt.

Løsning

Nedenfor gives data til beregning af målinger af central tendens.

Ved hjælp af ovenstående oplysninger vil beregningen af ​​højdens gennemsnit være som følger,

= 2367/15

Gennemsnit vil være -

  • Middelværdi = 157,80

Antallet af observationer er 15. Derfor vil middelhøjden være henholdsvis 2367/15 = 157,80.

Derfor kan medianen for højden beregnes som,

  • Median = 155

Medianen ville være 8 th observation som antallet af observationer er ulige, som er 155 for vægt.

Derfor kan højdefunktionen beregnes som,

  • Mode = 171

Beregning af gennemsnit af vægten vil være som følger,

= 1047,07 / 15

Vægtens gennemsnit vil være -

  • Middelværdi = 69,80

Derfor kan vægtens median beregnes som,

  • Median = 69,80

Medianen ville være 8 th observation som antallet af observationer er ulige, som er 69,80 til vægt.

Derfor kan vægttypen beregnes som,

  • Mode = 77,00

Nu er tilstanden den, der forekommer mere end én gang. Som det kan ses fra ovenstående tabel, ville det være henholdsvis 171 og 77 for højde og vægt.

Analyse: Det kan observeres, at den gennemsnitlige højde er mindre end 160 cm. Vægten er dog mindre end 70 kg, hvilket kan betyde, at Ryans skoleelever muligvis ikke kvalificerer sig til løbet.

Tilstanden viser nu en ordentlig central tendens og er forudindtaget opad. Medianen viser stadig god støtte.

Eksempel 3

Det universelle bibliotek har følgende antal af mest at læse bøger fra forskellige klienter, og de er interesserede i at kende den centrale tendens til bøger, der læses i deres bibliotek. Nu er du nødt til at beregne den centrale tendens og brugstilstand for at bestemme, hvem der ikke skal læse.

Løsning:

Nedenfor gives data til beregning.

Ved hjælp af ovenstående information vil beregningen af ​​gennemsnit være som følger,

Middelværdi = 7326/10

Gennemsnit vil være -

  • Middelværdi = 732,60

Derfor kan medianen beregnes som følger,

Da antallet af observationer er selv, ville der være to midterste værdier, som er det 5 th og 6 th position vil være medianen, som er (800 + 890) / 2 = 845 .

  • Median = 845,00

Derfor kan modellen beregnes som følger,

  • Mode = 1101,00

Vi kan bruge nedenunder histogrammet til at finde ud af tilstanden, som er 1100, og læserne er Sam og Matthew.

Relevans og anvendelser

Alle målinger af central tendens anvendes i vid udstrækning og er meget nyttige til at udtrække betydningen af ​​de data, der bliver organiseret, eller hvis nogen præsenterer disse data for et stort publikum og ønsker at opsummere dataene. Felt som i statistik, økonomi, videnskab, uddannelse osv. Overalt bruges disse foranstaltninger. Men ofte vil du høre mere om brugen af ​​gennemsnit eller gennemsnit på daglig basis.

Interessante artikler...